哈工三维

3D打印技术在航天复合材料制造中的应用

发表时间:2020-07-21 16:36

     21世纪,复合材料的需求将以更快的速度增长,而其高成本成为制约复合材料广泛应用的重要瓶颈。低成本复合材料制造技术是目前世界上复合材料研究领域的一个核心问题。提高复合材料的性能价格比,除了在原材料、装配与维护等方面进行研究改进外,更重要的是降低复合材料制造成本。


640.webp (3).jpg


     近年来,3D打印技术的出现为制造业开辟了一个全新的思路,不同于传统制造业的减材制造和等材制造,它通过添加材料的方式可以快速地成型复杂形状产品,并且实现有限度的利用原材料。研究3D打印技术在航天复合材料产品制造的适用性,对于促进航天复合材料产品的低成本化制造具有重要的意义。


     航天器的发射成本高,有效载荷的质量对发射成本影响巨大,因此有效载荷在结构设计和材料选用时特别注重结构效率。碳纤维复合材料具有强度高、模量大、热稳定性好、可设计性强等特点,优异的综合性能正是追求性能、结构质量效率化的航天产品所需。目前,应用在航天光学遥感器的碳纤维复合材料产品涵盖遥感器的各个部位,如相机镜筒、相机支架、遮光罩、桁架等。


3D打印技术


1、3D打印技术原理


     3D打印也叫增材制造,区别于传统的减材或等材加工制造方法,它是采用材料逐层累加的方法制造实体零件。该技术是在现代CAD/CAM技术、激光技术、计算机数控技术、信息技术、精密伺服驱动技术以及新材料与物理化学技术的基础上集成发展起来的。其工作原理是将物理实体的计算机三维模型离散成一系列的二维层片,利用精密喷头或激光热源,根据层片信息,在数字化控制驱动下,将熔覆的成型材料通过连续的物理层叠加固化,逐层增加材料来生成三维实体产品。


2、复合材料3D打印技术


     在各种3D打印技术中,能够进行复合材料3D制造的主要有选区激光烧结(SLS)、熔融沉积成型(FDM)、分层实体制造(l,LOM)以及立体光刻技术(SL)。


(1)SLS


     SLS制造复合材料的主要方法是混合粉末法,即基体粉末与增强体粉末混合,激光按设计图纸的截面形状对特定区域的粉末进行加热,使熔点相对较低的基体粉末融化,从而把基体和增强体粘接起来实现组分的复合。


(2)FDM


     FDM工艺制造复合材料是预先将纤维和树脂制成预浸丝束,再将预浸丝束送入喷嘴,丝束在喷嘴处受热融化并按设计轨迹堆放在平台上形成一层层材料,层与层之间通过树脂部分或完全融化形成连接。FDM技术所用的复合材料预浸丝束必须满足组分、强度以及低粘度等要求,一般需要在复合材料中添加塑性剂增加流动性。


(3)LOM


     LOM技术与FDM类似,需预先制备单向纤维/树脂预浸丝束并排制成无纬布即预浸条带,预浸条带经传送带送至工作台,在计算机的控制下,激光沿三维模型每个截面的轮廓线切割预浸条带,逐层叠加在一起,形成三维产品。


(4)SL


     利用SL制造复合材料,首先需将光敏聚合物与增强颗粒或纤维混合成混合溶液,利用紫外激光快速扫描存于液槽中的混合液,使光敏聚合物迅速发生光聚合反应,从而由液态变为固态,然后工作台下降一层薄片的高度,进行第二层激光扫描固化,如此反复,形成产品。


航天用树脂基复合材料3D打印技术分析


     1、开发适应性的打印材料。复合材料3D打印过程要求打印材料具有适当的粘度、流动性、长的操作时间、短的成型时间,因此需对现有航天复合材料材料体系进行适应性开发,对材料体系进行改进,以提供满足3D打印技术和航天应用要求的材料。


     2、突破纤维多维连续打印。复合材料3D打印设备亟需突破在多维方向的连续堆积,如设置五轴/六轴联动打印平台通过转动平台实现多维连续打印,以满足航天复杂结构产品多个平面、多个部位的连续铺层要求。


     3、实现预压实功能。热固性树脂基复合材料需在高温高压下实现树脂基体的固化和制件的致密化,可在打印一定层数后在设备内对坯体进行预压实和加热,提高打印中间过程的致密性,打印完成后再将坯体移至固化设备进行固化。采用低成本技术是降低复合材料产品成本的有效途径之一,3D打印技术通过增加材料实现产品的制造,能够发挥材料的利用率,降低复合材料生产成本。此外,对于复杂结构复合材料产品,3D打印技术还可以减小对工装的依赖,缩短加工时间,同时还可以实现整体成型、减少装配时间,研究3D打印技术在航天复合材料的应用具有重大意义。


分享到:
热线电话
柳小姐:18152600679
微信客服
卢先生:17507307417